
International Journal of Theoretical Physics, Vol. 28, No. 9, 1989 

First Flash and Second Vacuum 
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I propose that history is a network of quantum jumps. The universe begins as 
a single point. It multiplies by fission into a chaotic but causally ordered phase 
of indeterminate dimensionality. This in turn condenses into our ambient vacuum. 
Only then does inertia arise, as a macroscopic quantum effect. 

1. I N T R O D U C T I O N  

The question that opens this volume is whether the origin of  the universe 
is a singularity or instability. The answer I would like to put forward is 
" N o . "  For to call the origin a singularity would be a euphemism for saying 
that our theory does not in fact describe it, and to call it an instability would 
imply that there is a pre-existing system to be unstable. Both singularity 
and instability are smoothed continuum descriptions of  important  phases 
of  the early history of the universe, but neither is a true origin. It seems 
unlikely that any theory based on a space-time continuum can describe the 
origin of  that continuum. It happens that the algebraic theory I am currently 
developing provides a true origin for the universe. 

Even the first and most  primitive theory of  what came to be called a 
black hole showed that sufficiently extended gravitational sources may be 
at spacelike separations from a remote observer, but sufficiently concen- 
trated spherical sources, and as an extreme case singular point sources, lie 
either in the past or the future of  the observer, on the far side of  a 
"unidirectional membrane"  (Finkelstein, 1958). Such singularities, where 
the differential manifold theory of  space-time breaks down, seem to rep- 
resent the birth pangs of the universe and the death pangs of stars (Ruffini 
and Wheeler, 1970). To regularize them and bring them into the scope of 
physics, I have been developing a quantum-algebralc theory of space-time. 
Since classical topology is based on classical set theory, it seems natural to 
base quantum topology on a quantum set theory (Finkelstein et  al., 1959). 
It is reviewed, updated,  and applied to cosmogony in this paper. 
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1082 Finkelstein 

Others have considered such theories: 

To be sure, it has been pointed out that the introduction of a space-time 
continuum may be considered as contrary to nature in view of the molecular 
structure of everything which happens on a small scale. It is maintained that 
perhaps the success of the Heisenberg method points to a purely algebraic 
method of description of nature, that is, to the elimination of continuous functions 
from physics. Then, however, we must also give up, by principle, the space-time 
continuum. It is not unimaginable that human ingenuity will some day find 
methods which will make it possible to proceed along such a path. At the present 
time, however, such a program looks like an attempt to breathe in empty space. 
(Einstein, 1936) 

It may well be that the marriage of gravitation and quantum mechanics requires 
a few more drastic revisions of our ideas. For example, our description of 
space-time as a continuum may have to be replaced by a discrete granular 
structure at extremely short distance. (National Research Council, 1986a) 

It may be that local Lagrangian field theory is not the correct approach to 
quantum gravity. Perhaps, as some believe, the basic quantum quantities are not 
the variables describing a space-time continuum but a more discrete structure. 
(National Research Council, 1986b) 

Q N D  ( q u a n t u m  network  dynamics)  is a "pure ly  algebraic  method  of 

descr ip t ion of  na tu re"  as a network of q u a n t u m  jumps.  The language  of 
Q N D  permits  us to formulate  the creat ion of  the universe in at least the 

fol lowing stages: 
�9 The First Flash. The point  origin of the universe and  time (Finkel-  

stein, 1969). This is not  quite the vacuum fluctuat ion of Tryon  (1973), 

which assumes a preexistent  space-t ime c o n t i n u u m  and  Hami l ton ian ;  

nor  the pregeometry  of  Wheeler  (1973) and  Misner  et aL (1973). 

�9 Vacuum II. A chaotic  but  causally ordered phase of Q N D ,  a tangle 

of  arrows of time. 
�9 Vacuum I. A coherent  state of Q N D  s imula t ing  a mani fo ld  [Finkel-  

stein (1978, esp. p. 13; 1987, 1988, 1989). Chew and  Stapp (1989) 
also propose  that  space-t ime is a coherent  state]. 

2. Q U A N T U M - S P A C E - T I M E  

In Q N D  space-t ime does not  act on mat ter  nor  matter  on space-time. 
There ne i ther  has separate existence. Both are smoothed descript ions of 
the quan tum-space - t ime  dynamica l  network,  which acts u p o n  itself. 

S tandard  q u a n t u m  theory is a pen thouse  added  to an already completed  
tower of classical physics (Figure 1). Q N D  began  as a p lan  to rebui ld  this 
tower on q u a n t u m  founda t ions  and  simplified into a one-level structure 
(Figure 2) based on the scalars 0 and  1, a part ial  opera t ion  v, and  two 
opera t ions  ~ and  +. Dynamica l  succession is represented by ~, mult ipl ic i ty  
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Architectures of classical and quantum field theory. Canonical quantization is added 
to a finished classical field theory (a) to make quantum field theory (b). 

by v, and quan tum superposi t ion  by +. For  didactic reasons I in t roduce L, 
v, and + one by one here. 

2.1. Time 

Peano ' s  theory o f  the natural  numbers  N postulates the existence o f  1, 
a mapp ing  ~ called successor,  and N. When  I interpret N physical ly as a 
discrete time I shall write it as T. Peano 's  postulates are 

T1. l e T .  
T2. a c - [ [ ~ c ~  c g .  
T3. 1~ ~'T. 
T4. 1- is the least class satisfying T1-T3.  

[The prime in T3 and below lifts a mapp ing  f rom idividuals to sets; for any 
subset S = T, one writes " the  ~'s o f  S"  as 

~'S:= {w'lo'~ S} 

and similarly for v '.] 

i c dynamics I 
t q ~a.,mau~ ~_ 
{ q topolo~, 

i q~,~0o,r I 
[ q predicate alsebra J I q netw~ d ~  am~cs f 

a b 

Fig. 2. Architectures of QND. When the principle of superposition is moved from the top 
of Fig. lb to the bottom of part (b) of the present figure and the successor operator r is 
introduced, the tower telescopes into one story (b). 
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T1-T4 amount  to a recursive scheme for generating -g that emulates 
the passage of time: 

-I]- ={1}~  t 'T  

{1} is the set whose only element is 1. Each step of the recursion consists 
in inserting a previously defined approximation to T into the right-hand 
side and taking the right-hand side as the next approximation.  The initial 
T is the null set. The limit 1- is the infinite sequence 

~-={1, t l ,  t t l , . . . }  

Thus, the events of  T are words in two symbols; 1 expresses the beginning 
and t the advance of time. 

2.2. Space-Time 

To model space and its contents as well as time, I extend ~ to a tree 
S of  higher dimensional patterns of dynamical succession. I do not define 
a space-time and then attach fields to it; I define the network and abstract 
space-times and fields from it. It would be a mistake to seek a resemblance 
to Minkowski space-time prior to the quantum theory. 

Let v be the partial operation of disjoint union, defined only for 
disjoint sets and then agreeing with the union. 1 is the identity of  this partial 
operation. I postulate the existence of  ~, 1 ~ ~, ~: ~ ~ ~, and v: ~ x 5 -* ~, 
with 

~ v ( f l  v ~,)=(o~ v f l ) v  % o~ v/~ = f l v  o~, lv~=,~, 

O v  ol = t a  v tc~ = t O = O  

So v is an associative commutative nilpotent product  with identity 1 (the 
null set) and zero 0 (the undefined set); The appropriate  replacement for 
Peano's postulates T1-T4 is now: 

S1. 1 ~ 5 .  
S2(t). a ~ 5:=>tee ~ 5. 
S2(v). ~ $ a n d / 3 ~ a v / 3 ~ .  
$3. 1 ~ t 'g .  
$4. $ is the least class satisfying S1-$3. 

The recursion for S1-$4 is then 

5 = { 1 } u  t ' S u $ v ' 5  

Peano's operator  ta  is the operator  {c~} of forming a unit set or monad.  $ 
is the space of  all finitistic classical sets. 
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As usual, an element of  5 may be interpreted either as predicate or as 
set. For predicates, 1 is usually written F or FALSE and a v fl is the partial 
OR of  Peirce (1886a, b), written aPOR/3 here. In terms of more familiar 
predicate operations, 

aPOR/3 = c~ORfl if a A N D f l  = F 

a POR/3 = 0 otherwise 

Here " =  0" means "is undefined." OR and XOR are complete operations, 
POR is partial. Elsewhere I write SEx for 5. 

An element ~ of  5 can also be read as a network history. The elements 
~?~, �9 �9 �9 ~TN of  ~ represent the final events of  that history. The elements 
~7~,. �9 �9 ~7~M of  ~71 represent the immediate antecedents of  ~ ,  and so forth, 
back to 1. The operator  ~ then represents dynamical  succession, and each 
event is an ancestral element of  all its antecedents. 

5 is the space of all ancestrally finite sets, a universal language for 
finite mathematical  objects, and can represent any finite dynamical process. 
The unit of  such a process is a dynamical event a, which is maximally local 
and then maximally informative, corresponding to a space-time point with 
its basic field variables but not their derivatives. These make up a graph 
E c 5. The vertices a of  E represent dynamical  events. The edges 6 of  E 
replace directional derivatives. [The approximation of Minkowskian mani- 
folds by such graphs is treated, for example,  by Bombelli et al. (1987).] 
The basic principle connecting events is neither a topology nor a causal 
relation, but the dynamical  successor operator  ~. 

A kinematically possible history expresses each event a '  by means of 
in terms of its predecessors a and links 6. Since the same event generally 

has various representations of  this kind, it is generally necessary to form 
equivalence classes. These form a subspace K H  c 5 .  

A dynamical  history is the submanifold of  K H  obeying the dynamical 
law D L  of  the theory. The function space of  all such histories is the space 
D H  of  dynamical  histories. D H  is the phase space of  the system (Barrett, 
1989). Thus, D H  is the subspace of K H  subject to the dynamical law DL, 

D H  = K H \ D L c  5 

Thus, one can represent any discrete classical dynamical process exactly 
by a quotient space of a subspace of  5, keeping the dynamical interpretation 
of  ~; and can represent any continuous process similarly, therefore, as 
closely as one likes. I illustrate this construction below. 

2.3. Quantum-Space-Time 

Q is a universal quantum-space-t ime in the sense that 5 is a universal 
classical space-time. Besides the space-time concepts of  5,  it has a quantum 
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superposition operation +. Since v is the only product that occurs, I usually 
write ce v/3 as a/3. I postulate the existence of 

Q 

1 6 Q  

v: Q x Q ~ Q  

+: Q x Q--> Q 

and that (Q, v, +) is a Grassmann ring over ~'Q: 

t~(/3y) = (a/3)% l a  = a = a l ,  0a  =0,  (~a)(~a) = 0 

ce(/3 + ~/) = ,~/3 + ~r, ~+/3 =/3 +,~, 0 + c e = a ,  ~ + ( - ~ ) = 0  

4 ~  +/3) = ~+~/3,  4 - c ~ ) = - ~  

Note that monads, which commute in ~, anticommute in Q. I call its 
elements quantum sets or qets. Elsewhere I write QET for Q. 

The scheme for generating events replacing T1-T4 and S1-$4 is now: 

Q1. l c Q .  
Q2(L). a c Q==>Lce ~ Q. 
Q2(v). a ~ Q  and/3~Q=:>ce v/3 ~Q. 
Q2(+). a ~ Q a n d / 3 ~ Q ~ c e - f l ~ Q .  
Q3. 1 ~ ~'Q. 
Q4. Any class satisfying Q1-Q3 includes Q. 

The recursion is now 

Q = { 1 } u  ~ 'QuQv 'Q.  u Q - ' Q  

It is useful to write ~a as a qet bracket (a[, uniting the ket bracket Ice) 
of Dirac, the set bracket {ce} of Cantor, and the successor operator ~ of 
Peano: 

Qets nest like sets, add like kets, and multiply like Grassmann extensions. 
They represent either quantum sets or quantum predicates. 

Q serves as the space of  quantum kinematical histories K H  of a 
universal finitistic quantum entity and its Fermi-Dirac ensembles. First- 
grade elements of Q, or monads, represent dynamical events; ~, dynamical 
succession; and v, combination. The product a/3 unites the Grassmann 
product  of  fermionic quantum kinematics, the disjoint union of set theory, 
and the Peirce partial operation POR. Equivalence classes define kinematical 
histories as with 5. Now the quantum-space-time is also a one-quantum 
phase space, in the sense that a momentum state is a superposition of 
position states. 
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I omit the complex numbers C from the foundations because we can 
make them from what we have. A complex number is a pair of reals; a real 
is physically indiscernible from a rational; rational vector components may 
be turned into integers in a finite-dimensional vector space by rescaling the 
state vector, with no change in its physical meaning; and we can make the 
integers with 1, +, and - .  The imaginary unit i is then an operator associated 
with a superselection law arising from random phases. I use a provisional 
i in the present work for the coefficients of SL2. 

Set theory is said to be a universal language for mathematics. Neverthe- 
less, the quantum physical world cannot be represented in classical set 
theory in the strong sense I use here, but possibly can in quantum set theory. 
I give each of  the primitives {1, ~, v, +} a single uniform physical meaning 
(and 0 none at all). That is, 1 expresses the beginning, ~ temporal succession, 
v the combination of coexistent alternatives, and + the quantum. To express 
the standard spacetime and energy-momentum variables, the various gauge 
fields, and the dynamical law in terms of  these basics is nontrivial and 
would be a genuine unity. 

The QND I use here borrows from the usual quantum field theory two 
fixed algebraic elements of Q labeled ~', $, and the operator i, and retains 
the concept of a permanent dynamical law. All these seem arbitrary in 
QND, and so I expect that they are order parameters. It is known that the 
imaginary unit, as an order parameter i =  f ix) subject to variations gi(x) 
preserving i 2= -1 ,  is a natural SU2 Higgs field, making a massive charged 
photon-companion.  

3. QUANTUM NETWORK DYNAMICS 

3.1.  N o n u n i t a r i t y  

I turn now to a quantum network dynamics in Q. QND must sacrifice 
one of local relativity, superposition, unitarity, and local finiteness, for there 
is no finite-dimensional unitary representation of  the Lorentz group. Unitar- 
ity is the unique correct sacrifice for the following reasons. 

1. Unitarity expresses conservation of probability in time and is mean- 
ingful only for entities which persist in time, like stable particles. 
A unitary theory is less appropriate for the creation of  the universe 
than for any other phenomenon that has occurred so far. 

2. Unitary structure is nonlocal, involving an integral over a time slice. 
3. Unitarity need not be postulated, but may be simulated in a nonuni- 

tary theory by a spontaneous breaking of  the linear group, as a 
property of the condensed phase, like ferromagnetism. 

4. Q is a nonunitary quantum theory, unlike the quantum set theory 
of  Finkelstein et al. (1959). Like most theories, it may be interpreted 
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either as a phenomenological  theory or a fundamental  one. To use 
Q as a phenomenological  theory, I provide a nonunitary form of 
the quantum principle, one not mentioning probabili ty and valid 
for the usual quantum theory as well. 

Quantum Principle. An input process is described by a qet and an 
output one by a dual qet, such that the transition is forbidden if the 
contraction is 0. 

Probably we do not require probabili ty formulas in the foundations of  
quantum theory. Probability is a poor  man 's  set theory. It deals with highly 
special set variables of  a large set of trials, those which are averages of  
individual variables over the set. Q can express these variables and more. 

3.2. Intensionality 

The usual quantum theory describes properties or classes with Her- 
mitian operators,  using the Hilbert space metric. We cannot do this in the 
nonunitary quantum theory of Q. As a guide to the correct procedure, I 
return to 5. 

To describe properties in 5, standard logical practice assumes 
extensionality, an isomorphism from (finite!) classes to sets, and represents 
classes or properties by elements of  5. 

I emulate this in Q; this is not yet standard practice in quantum logic. 
Q shall be both the algebras of  quantum classes and quantum sets in one. 
We may read the symbol a ~ Q as a set, ~a as the unit set or monad  of a, 
rra as the monad  of the monad  of a, and so forth. Then a/3 is the disjoint 
union. But we may also read each a ~ Q as a class or predicate, ~a as the 
predicate of  being a, Lra as the predicate of  being the predicate of  being 
a,  and so forth. Then a/3 is the disjoint union. But we may also read each 
a ~ Q as a class or predicate, ~a as the predicate of being a, ~ a  as the 
predicate of  being the predicate of  being a, and so forth. Then a/3 is the 
quantum correspondent  of  the Peirce partial disjunction aPORfl ,  and I 
write it as aQOR/3. 

3.3. Chronons 

Q N D  relates dynamical entities of  two kinds, events and chronons 
(Finkelstein, 1969), corresponding to vertices and directed edges of  a graph, 
or states and transitions. In a provisional QND,  I construct all events from 
the first event 1, two constant independent chronons /~z=q', $, spinor 
analogues of  timelike future vectors or arrows, and a fixed operator i on 
Q playing the role of  the complex imaginary, a superselection law; how 
superselection laws may arise from random phases is already understood. 
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The chronons ~ = 1', $ may be regarded as dynamical impulses. In the 
"one-part ic le"  part  of  the theory, the equation (1) giving the dynamical 
response/3 to impulse 8~ acting at event a takes the form 

oe~ = ~(6:~oe) (2) 

I f  there are not two, but N independent  6's, then N equations of  the 
form (2) give the N successors a s ,  E =  1 , . . . ,  N, of  an event a, for N 
independent  links 8 1 , . . . ,  8N. I call the N + 1 events so related an N-ary  
node, or N-ode.  An N-ode  has the group SLN, the special linear group on 
its N final events. Any collection of equations like (2) with possible iden- 
tifications among the a ' s  defines a quantum dynamical network. 

4. VACUUM I 

Vacuum I is the background for general relativity and the big bang. I 
now form a trial Vacuum I for QND. This part  of  the work is kinematical. 

4.1. Quantum Equivalence Principle 

The first thing I account for is the principle of  equivalence, the validity 
of  the Lorentz group of the macroscopic causual relation in the tangent 
space. The Lorentz group itself is not the group of any node, but its covering 
group SL2 is, namely of a binary node. One reason to choose the Grassmann 
product  v as basic combinatorial  operation (rather than, say, the Clifford 
product  as earlier) is so that the two successors transform as a spinor under 
SL2. In QND,  events are related to their successors not by infinitesimal 
vectors as in x'= x + dx, but by finite spinors, and Einstein's equivalence 
principle follows from the following: 

Quantum Equivalence principle. The successors of  an event are two 
equivalent quantum entities with Fermi-Dirac  statistics. 

There are therefore two basic chronon qets, which I write as 6~ = (El = 1', 
$. The two successors ~O~ of  any event ~0 are given by 

After Z chronons, a path from an arbitrary event ~ may arrive at any 
of  the events ~0~ .~. with Z binary indices. I write (E) for such a sequence 
of Z indices of  the type E. The process begins with an initial event $ = 1, 
the null qet. Then the algebra KH of kinematic histories is generated by 
the paths defined inductively by 

~O~.(~) = ((E'l~b(z)] (3) 
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Each of the polyspinors ~Oc~ ~ describes not merely an endpoint, but an 
entire path, which may be developed from the endpoint by repeated 
debracketing. 

4.2. Chronon Pair Formation 

Having accounted for the group SL2, I ask why the space-time manifold 
(actually, its tangent bundle) seems to be made of vectors, not spinors. 
Vectors are products of spinors and "antispinors" (complex conjugate 
spinors). 

I infer that two fermionic chronons in sequence (3) form a pair 
described by a qet with the vectorial transformation law of (EE* I. 

It follows that the operator L anticommutes with the operator i (is 
antilinear). 

Then spinors and antispinors alternate in sequence in $ ~ .  I write o- 
for the pair index YE*. The module is described by a pair spinor (o-] and 
the path with even Z has the form ~b~. 

Thus, the basic module (3) of our trial vacuum has one initial and four 
final events. The actual vacuum may be made of  various modules with 
probability amplitudes to be determined. 

4.3. The Hypercubic Vacuum Lattice 

Finally we must account for the macroscopic observable nature of 
space-time vectors. They are not quantum ~ vectors, states, describing 
quantum channels, but macroscopic objects, and serve as parameters or 
observables themselves. 

Macroscopic classical objects are aggregations of microscopic quantum 
ones, but these ensembles may be incoherent (like the density field in the 
Thomas-Fermi model of  the atom, which forgets quantum phases) or 
coherent (like the velocity field in superfluidity, which preserves quantum 
phases). In one case what emerges as the classical variable is a probability 
distribution p, in the other a probability amplitude distribution r We may 
call the respective inverse problems (going from macroscopic theory to 
quantum) incoherent and coherent quantization, according as they start 
without or with quantum phases. 

Canonical quantization begins from a theory without quantum phases; 
it is an incoherent quantization, extrapolating from high quantum numbers 
to low. 

On the other hand, we make a correct theory of  a Josephson junction 
potential V(t), for example, not by canonically quantizing V, but by co- 
herently quantizing it, which entails recognizing it as a quantum phase. 
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The space-time vector dx :~*~ transforms not as an incoherent statistical 
operator p~', but as a coherent state vector of a pair. I therefore procede 
coherently. 

Suppose that the algebra of dynamically allowed paths DH in Vacuum 
I is the symmetric subspace of the tensors 0(~.  If  {o-} stands for a symmetric 
sequence of  cr's, the collective index of a symmetric tensor, the quantum- 
space-time paths in Vacuum I have the form 0 ~  with a symmetric sequence 
of Z/2  o--indices. One may then identify the momentum operator 0~ with 
the Bose-Einstein creation operator ~ on DH, and the coordinate operator 
x ~ with the dual Bose-Einstein annihilation operator on DH. With this 
identification the initial event 1 has definite space-time coordinates x ~= 0 
and indefinite energy-momentum, which is more plausible than any other 
linear combination. All physical time-space vectors v s are regarded as 
macroscopic ~b vectors v ~*~ of condensed aggregates of  E-E* pairs, present 
only in the cold phase, Vacuum I. The null sequence {o-} = 1 yields the 
ur-event tp~ = 1. The canonical commutation relations between p and x 
follow from algebra, not from the differential calculus of the continuum. 
The unitary structure based on classical Minkowski space-time emerges in 
the nonuniform limit of large chronon numbers. 

This dynamics does not reside on a prior space-time. The space-time 
coordinates are operators on the prior space of dynamical histories. 

This symmetry of DH means that two paths which differ only in the 
order of their elements or chronons lead to the same event. This specifies 
the topology of Vacuum I. 

A 4q~} is-defined by four integers giving the number of indices of the 
four kinds 1'1'*, 1'~*, $1'*, $$*; four occupation numbers, in other words. 
These basic events thus form a "sexidecimant" of  the infinite four- 
dimensional hypercubical lattice. The events q,~} provide two interstitial 
events for each unit cell. 

This lattice unites and extends the two-dimensional checkerboard of 
Feynman (1972, esp. pp. 168-169) and Feynman and Hibbs (1965), the 
quantum space-time of  von Weizs~icker (1951, 1955), and the two- 
dimensional spherical spin network of Penrose (1971). [Penrose told me 
about his spin networks in 1959-60, though I did not take up the idea until 
Finkelstein (1968, 1969a, b).] A lattice with different elements but with a 
similar topology is derived from a continuum quantum space-time theory 
by Das (1989). 

A simple action for the Dirac dynamics of  a spin- l /2  quantum along 
the lines of  Feynman's checkers game is given in Finkelstein (1989). It 
identifies the interstitial qets of the above lattice with fermion annihilation 
operators, which also anticommute and vanish on the vacuum. QND is 
more monistic than a unified field theory can be. 
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Such a quantum condensation seems required to account for the follow- 
ing features of  standard physics, which would otherwise be incomprehen- 
sible in QND.  

4.4. Supermobility 

The law of inertia and momentum conservation are problematic in any 
discrete space-time, since the network is not invariant under translation. 
The corresponding momentum transfer in a crystal is an Umklapp process. 
Since we see no Umklapp in the vacuum up to enormous energies, E, we 
may be inclined to place an extremely low upper  bound <I/E on the 
fundamental  cell size or chronon of the network. But this would be incorrect 
if an Umklapp requires a macroscopic number  of  coherent events. Then 
inertia is a macroscopic quantum effect. Since Newton's  first law states that 
the mobility of  a particle, usually defined as (0[force]/0[velocity]) ~ at zero 
velocity, is infinite in the vacuum, we may call the law of inertia supermobility 
to class it with the more recently discovered macroscopic quantum 
phenomena  of superfluidity and superconductivity. Since the event pairing 
occurs between neighbors in space-time rather than momentum space, the 
vacuum in thermal equilibrium is presumably not a two-fluid system like 
liquid He II. 

Spinors and pair spinors are complex, yet time space and gauge vectors 
are real. I f  this is a spontaneous breaking of gauge invariance as in supercon- 
ductivity, then it is necessary to Hermitian-symmetrize the module (o-[ before 
forming the sequence f f ~ .  

4.5. Particle Symmetries 

The internal particle symmetries all seem to be gauge symmetries. 
Gauge fields describe defects in the vacuum network, in the way that the 
Burgers vector does in a crystal. A path from gauge fields to topology is 
already rather well marked in a simplicial theory of space-time: 

1. Every gauge field is the commutator  of  a gauge-covariant derivative 
operator  with itself. 

2. This derivative is a limit of  the coboundary operator of  cohomology. 
3. The coboundary operator and its commutat ion relations express the 

topology of the complex. 
I f  we can retrace this line of  connections in QND,  we will arrive at a 

purely topological theory of  the gauge fields. Identifying the derivative 
operator with module creation operators corresponds to step 2. 

Since we already have the network correspondent to spin, and none 
to charge or the other coupling constants, the first step is a theory of  the 
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t ransport  of  spin in the vacuum network, describing those defects in the 
network which produce torsion and curvature in space-time, presumably 
dislocations and disclinations, respectively. That would constitute a quan- 
tum theory of  gravity. 

To extend the gauge theory of nets from gravity to the other interactions, 
we have to assign defect structures to the known internal symmetry 
generators. 

In the most immediate model of  color SU3 symmetry within network 
theory, each event supports not only the two "external"  chronons already 
described, which link up into long paths of  the macroscopic vacuum, but 
also three additional microscopic "internal" chronons that do not. This 
vacuum resembles a fur-covered checkerboard. Although the global struc- 
ture of  the network is four-dimensional,  as if  the nodes were binary, each 
node is actually a 5-0de. The color group then mixes the internal chronons. 
This discrete quantum version of Kaluza-Kle in  theory puts a heavy responsi- 
bility on the network dynamics,  which must bind just three internal chronons 
to every two external ones, but Q N D  suggests that such a structure actually 
exists. More generally, color ought to label a natural trio of  distinguishable 
defects in the vacuum network which are isomorphic but not mixed by SL2; 
I have not found such defects yet, except the internal chronons already 
described. 

5. VACUUM I I  

This is the vacuum phase that precedes the manifold. 
Evidently there is a causal ordering of the events in this phase as in 

any other. The events of  Q are all partially ordered by the ancestral ~ * of  
the membership  relation ~ define d by the successor relation ~. 

As we go back to higher temperatures,  presumably the condensation 
of pairs into paths will break up first, and then the pairs themselves. I see 
no reason to suppose that Vacuum II exhibits any fixed dimensionality. 
Since the coordinate representation depends on the hypercubical lattice of 
Vacuum I, there is no natural concept of  coordinate system for Vacuum II. 
Likely there are several distinct concepts of  proper  time consistent with the 
dynamical structure of  Vacuum II  which coincide for Vacuum I. 

The binary node does not support  time reversal T or parity P; it is 
made of two-component ,  irreversible (Weyt, chiral) spinor entities (El, not 
reversible vector ones. There is no need to break P or T in QND;  the 
problem is to create them. Vacuum I is organized so that, for example,  each 
event has two immediate predecessors as well as two successors, which may 
be taken as the T transforms of each other. Vacuum II  lacks this crystal-like 
organization, and P and T as well. 
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These symmetries  will also be violated locally if sufficient energy is 

injected at a point  of  Vacuum I to induce  a phase t ransi t ion.  I identify this 
breaking  tentat ively with the P and  T viola t ion that  is observed in the weak 

interact ions,  since I know no other. Then,  on d imens iona l  grounds  (unre-  
l iable in a theory with so many  large d imens ionless  numbers )  the critical 

tempera ture  T c  and  the ch ronon  ~ should be closer to M w  ~ l02 GeV, the 
mass of the W particle, than  to the Planck mass M p -  1019 GeV. This suggests 

that  balls of  Vacuum II are produced  in exper iments  today as well as in 
the First Flash. The exper imenta l  impl icat ions  of this are not  yet known.  

6. THE FIRST FLASH 

I call event 1 the First Flash in belated recogni t ion of Peirce, who 

describes " the first stages of development ,  before t ime existed" thus: 

Out of the womb of indeterminacy we must say that there would have come 
something by the principle of Firstness, which we may call a flash. Then by the 
principle of habit there would have been a second flash. Though time would not 
yet have been, this second flash was in some sense after the first, because resulting 
from it . . . .  We have no reason to think that even now time is quite perfectly 
continuous and uniform in its flow. (Peirce, 1890) 

We start, then, with nothing, pure zero. But this is not the nothing of negation . . . .  
The nothing of negation is the nothing of death, which comes second to, or after, 
everything. But this pure zero is the nothing of not having been born. There is 
no individual thing, no compulsion, outward or inward, no law. It is the germinal 
nothing, in which the whole universe is involved or foreshadowed . . . .  It is 
boundless freedom. (Peirce, 1898) 

Only  one event in Q certainly has no predecessor,  and that is the null  set 

1, which Peirce calls 0. The Big Bang is the later stage of cosmogony when 
the c o n t i n u u m  concepts  of general  relativity apply. The First Flash is the 
l ightning,  the Big Bang is the thunder .  

7. D Y N A M I C S  

7.1. Quantum Dynamics 

Time-slices and  the concept  of dynamica l  law as a one-paramete r  group 
of  global t ransformat ions  seem too global to be basic, except in a purely 
t imelike one -d imens iona l  world. But Heisenberg 's  original  idea of  dynami-  
cal law simply as a differential equat ion  for the dynamica l  variables is 
satisfactorily local. Its general iza t ion to networks is a collect ion of operator  
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equations relating variables at neighboring events. We may use the global 
action principle of quantum mechanics to define such local equations. 

A local dynamical theory has two algebras of variables: a kinematic 
algebra KA free of dynamical equations, and a dynamical algebra D A  
whose variables obey the dynamical equations. The dynamical algebra is a 
quotient of  the kinematical one modulo the dynamical equations DE: 

D A = K A / D E  

Quantum theories whose 0 vectors represent a process that happens 
on one time-slice may be called synchronic. They compress an input process 
that may actually be distributed over time into one initial instant. They 
assign input and outputs to different linear spaces, thus blocking their linear 
superposition and tacitly positing a temporal superselection rule, an artifact 
of the c /q  partition. 

Theories whose 0 vectors represent histories of what happens in all of  
space-time may be called diachronic. The Schwinger and Feynman quantum 
action principles may be formulated as diachronic theories. In the Schwinger 
(1970) source theory, a source is an element of a single linear space S, the 
source space, and describes both input and output ( i /o) processes over the 
entire experimental space-time region, allowing their superposition and 
lifting the superselection law between them. Sources are "superlocal" in 
that sources separated by timelike intervals, just like those separated by 
spacelike intervals, represent independent choices of the experimenter and 
are not related by dynamical equations. The distinction between input and 
output is made within S purely on the basis of the sign of the frequency. 

Each dual vector assigns a transition amplitude to each source. It 
therefore expresses a dynamical law or force law, and is called a field for 
short. I write F for an algebra of fields dually isomorphic to S, such that 
F and S are included in each other's duals. Each field determines a system 
of propagators. One field (vac] determines the vacuum propagators and may 
equally well be called the vacuum or the law of nature. It stores the forms 
of all the phenomenological interactions, and the charges, masses, and other 
coupling constants of the experimental quanta. 

Feynman's path amplitude represents the dynamical law and is there- 
fore an element of F, not S, and defines the vacuum. 

Since histories and variables assign numerical values to each other, 
they are categorically dual. The algebra of dynamically allowed histories 
D H  is therefore a subalgebra, the dual concept to a quotient algebra, of 
the algebra of kinematical histories K H ;  namely, the subalgebra of kinemati- 
cal histories that fulfill the dynamical equations of DE: 

D H  = K H \  D E  
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For Vacuum I the algebras K H  and D H  are given in Section 4.3. To 
specify the dynamical equations DE, in Finkelstein (1989) I identify the 
creation operator ~ 0 ~  with the field operator for the space-time point 
labeled by {~r} and the spin eigenvalue labeled by I~. It is then straightforward 
to translate the Weyl and Dirac particles, for example, into the algebraic 
language of Q. They seem to gain in translation, becoming locally finite, 
without ultraviolet catastrophes. 

7.2. Origin of Dynamics 

In diachronic quantum descriptions, the dynamical law is merely one 
element of the space F of  fields. Such a preordained dynamical law or 
vacuum seems unlikely to many, including me. Therefore I speculate here 
on an autonomous dynamics, one that does not add a second story to Fig. 
2b. Here I venture beyond my elementary mathematical models. 

A path to an autonomous dynamics was sketched by L. Susskind. One 
starts from a random dynamics [in the sense of Nielsen and Ninomiya 
(1989)] and renormalizes. The long-time dynamics of a system averages the 
random dynamics of the universe over all the variables outside the system 
and over the short-time variables of the system itself, and washes out vastly 
more variables than it retains. In the vicinity of a critical point, an unstable 
fixed point of the renormalization group dominates the average. 

An evolving random quantum topology fits Peirce's doctrines of Tych- 
ism and Synechism, and Wheeler's principle that "The only law is the Law 
of Large Numbers." The main difficulties I have had with this principle 
until now, and my present hopes for their resolution, are: 

1. I expected a random space-time to result in incoherent space-time 
propagation. But now the quantum condensation to Vacuum I may provide 
the necessary coherence. 

2. In field theory the space D H  of all possible action principles is 
unmanageably infinite, and to average we must choose a probability 
measure; one might as well choose a dynamics. In QND, however, D H  ~ Q 
is finitely generated, and it is natural to average over all dynamics in order 
of  increasing rank (power of  ~). No further measure is required. 

The natural coarse-graining transformation is the substitution ~"~ ~, 
which regards nth successors as immediate successors, and so changes the 
scale of space-time by a factor n. The module constructed in Section 4.2 is 
only the first vector network. Near critical points, iterated coarse-graining 
replaces this simple module by indefinitely complex vector modules able 
to carry much more information. Schr6dinger taught us to think of  organic 
structure as encoded in an "aperiodic crystal"; perhaps we must learn to 
think of dynamical structure in the same way. 
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8. SUMMARY 

The salient inferences about  the creation from Q N D  are: 
1. The origin of  the universe is a single quantum point event, the First 

Flash. 
2. Quantum-space-t ime is a quantum combination of quantum ele- 

ments of  spin 1/2 with Fermi-Dirac  statistics. 
3. These sp in - l /2  quantum elements are microscopic arrows of time, 

"chronons ,"  without time reversal. 
4. Chronons unite with their complex conjugates in sequential pairs 

to form quantum-space-t ime vectors. 
5. Vectors unite in long sequences to form quantum-space-t ime paths. 
6. Spacetime points are equivalence classes of  such paths. 
7. Vacuum I, the present ambient space-time, with its Minkowski 

chronometry,  is a critical phenomenon,  a Bose condensation of 
chronon pairs into a hypercubical lattice of  basic states. 

8. Defects in the Q N D  Vacuum I lattice give rise to the gauge fields. 
9. Vacuum II, the phase preceding Vacuum I, is a chaotic, but nonethe- 

less causally ordered network of events. 
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